
MATH 245 F22, Exam 1 Solutions

1. Carefully define the following terms: prime, converse.
Let n be an integer with n ≥ 2. We call n prime if there does not exist an integer a with both
1 < a < n and a|n. For any propositions p, q, the converse of conditional proposition p → q
is the proposition q → p.

2. Carefully state the following theorems: Distributivity theorem (for propositions), Conditional
Interpretation theorem.

The Distributivity theorem says: for any propositions p, q, r, we have p∨(q∧r) ≡ (p∨q)∧(p∨r)
and p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r). The Conditional Interpretation theorem states: for any
propositions p, q, we have p→ q ≡ q ∨ ¬p.

3. Let a, b ∈ N0. Suppose that a ≤ b. Prove that a2 ≤ b2.
Since a ≤ b, we have b − a ∈ N0. Since b, a ∈ N0, their sum b + a is also in N0. Since b − a
and b + a are each in N0, their product (b− a)(b + a) = b2 − a2 is also in N0. Hence a2 ≤ b2.

4. Prove or disprove: For all integers a, b, c, if ac|bc then a|b.
The statement is false. To disprove we need a counterexample, i.e. specific choices for a, b, c
where ac|bc and yet a - b. Many answers are possible, e.g. a = 2, b = 3, c = 0, but all will
have c = 0. Now ac|bc because taking k = 5 we have ack = (2)(0)(5) = 0 = (3)(0) = bc.
However, a - b since if at = b we have 2t = 3, so t = 3

2 /∈ Z.

5. Prove or disprove: For all integers n, if 7 - n then 14 - n.
The statement is true, and we will use a contrapositive proof. Let n ∈ Z be arbitrary. Sup-
pose that 14|n. Then there is some integer k with 14k = n. We now write 7(2k) = n. Since
2k ∈ Z, we have 7|n.

6. Carefully state the double negation theorem and prove it without truth tables.
The double negation theorem says: For all propositions p, we have ¬¬p ≡ p. Proof: Let p be
an arbitrary proposition. If p is T , then ¬p is F and ¬¬p is T . On the other hand, if p is F ,
then ¬p is T and ¬¬p is F . In both cases, p and ¬¬p agree.

7. Find a well-formed expression with three bound and two free variables.
Many solutions are possible; all contain five variables altogether. Here is one possible answer,
with integers a, b, c, x, y: ∀a, ∀b, ∀c, a + b + c = x + y.

8. Simplify the proposition ¬∀x ∈ R, ∃y ∈ R, ∃z ∈ Z (x < y)→ (x < z ≤ y) as much as possible,
where only basic propositions are negated. Be sure to justify each step. DO NOT TRY TO
PROVE OR DISPROVE THE RESULT, ONLY SIMPLIFY.

Step 1: pull negation into quantifiers: ∃x ∈ R, ∀y ∈ R, ∀z ∈ Z ¬
(
(x < y)→ (x < z ≤ y)

)
Step 2: apply Negated CI thm (2.16): ∃x ∈ R, ∀y ∈ R, ∀z ∈ Z (x < y) ∧ ¬(x < z ≤ y)
Step 3: interpret double inequality: ∃x ∈ R, ∀y ∈ R, ∀z ∈ Z (x < y) ∧ ¬

(
(x < z) ∧ (z ≤ y)

)
Step 4: apply De Morgan’s law: ∃x ∈ R, ∀y ∈ R, ∀z ∈ Z (x < y) ∧

(
¬(x < z)

)
∨
(
¬(z ≤ y)

)
Step 5: negate inequalities: ∃x ∈ R, ∀y ∈ R, ∀z ∈ Z (x < y) ∧

(
(x ≥ z) ∨ (z > y)

)
Step 6 (optional): distributivity: ∃x ∈ R, ∀y ∈ R, ∀z ∈ Z (y > x ≥ z) ∨ (z > y > x)



9. Without using truth tables, prove the “Composition Theorem”:
For all propositions p, q, r, we have (p→ q) ∧ (p→ r) ` p→ (q ∧ r).

All correct proofs begin by letting p, q, r be arbitrary propositions, and continue by assuming
(p→ q) ∧ (p→ r).

METHOD 1: Apply conditional interpretation twice to get (q ∨ ¬p) ∧ (r ∨ ¬p). Then apply
distributivity to get (q∧r)∨¬p. Then apply conditional interpretation again to get p→ (q∧r).

METHOD 2: Two cases, depending on p.
Case 1: p is F . Then ¬p is T , so by addition (q ∧ r) ∨ ¬p.
Case 2: p is T . By simplification on the hypothesis twice, p → q and p → r. By modus
ponens twice, we get q and r. By conjunction, q ∧ r. By addition, (q ∧ r) ∨ ¬p.
In both cases, (q ∧ r) ∨ ¬p. Now we apply conditional interpretation to get p→ (q ∧ r).

METHOD 3: Two cases, depending on p.
Case 1: p is F . Then p→ (q ∧ r) is vacuously true.
Case 2: p is T . By simplification on the hypothesis twice, p → q and p → r. By modus
ponens twice, we get q and r. By conjunction, q ∧ r. Then p→ (q ∧ r) is trivially true.
In both cases, p→ (q ∧ r) is true.

Note: p→ (q ∧ r) should be the dramatic conclusion, and should not appear earlier.

10. Using p, q, ↑ (possibly multiple times), but no other operators, find a proposition which is
logically equivalent to p→ q. Justify your answer.

Various answers are possible, such as p ↑ (q ↑ q) or p ↑ (p ↑ q); this solution uses the former.
The last two columns of the truth table below agree, which proves that p ↑ (q ↑ q) ≡ p→ q.

p q q ↑ q p ↑ (q ↑ q) p→ q

T T F T T
T F T F F
F T F T T
F F T T T


