MATH 245 F22, Exam 1 Solutions

1. Carefully define the following terms: prime, converse.

Let n be an integer with $n \geq 2$. We call n prime if there does not exist an integer a with both $1<a<n$ and $a \mid n$. For any propositions p, q, the converse of conditional proposition $p \rightarrow q$ is the proposition $q \rightarrow p$.
2. Carefully state the following theorems: Distributivity theorem (for propositions), Conditional Interpretation theorem.
The Distributivity theorem says: for any propositions p, q, r, we have $p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$ and $p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$. The Conditional Interpretation theorem states: for any propositions p, q, we have $p \rightarrow q \equiv q \vee \neg p$.
3. Let $a, b \in \mathbb{N}_{0}$. Suppose that $a \leq b$. Prove that $a^{2} \leq b^{2}$.

Since $a \leq b$, we have $b-a \in \mathbb{N}_{0}$. Since $b, a \in \mathbb{N}_{0}$, their sum $b+a$ is also in \mathbb{N}_{0}. Since $b-a$ and $b+a$ are each in \mathbb{N}_{0}, their product $(b-a)(b+a)=b^{2}-a^{2}$ is also in \mathbb{N}_{0}. Hence $a^{2} \leq b^{2}$.
4. Prove or disprove: For all integers a, b, c, if $a c \mid b c$ then $a \mid b$.

The statement is false. To disprove we need a counterexample, i.e. specific choices for a, b, c where $a c \mid b c$ and yet $a \nmid b$. Many answers are possible, e.g. $a=2, b=3, c=0$, but all will have $c=0$. Now $a c \mid b c$ because taking $k=5$ we have $a c k=(2)(0)(5)=0=(3)(0)=b c$. However, $a \nmid b$ since if $a t=b$ we have $2 t=3$, so $t=\frac{3}{2} \notin \mathbb{Z}$.
5. Prove or disprove: For all integers n, if $7 \nmid n$ then $14 \nmid n$.

The statement is true, and we will use a contrapositive proof. Let $n \in \mathbb{Z}$ be arbitrary. Suppose that $14 \mid n$. Then there is some integer k with $14 k=n$. We now write $7(2 k)=n$. Since $2 k \in \mathbb{Z}$, we have $7 \mid n$.
6. Carefully state the double negation theorem and prove it without truth tables.

The double negation theorem says: For all propositions p, we have $\neg \neg p \equiv p$. Proof: Let p be an arbitrary proposition. If p is T, then $\neg p$ is F and $\neg \neg p$ is T. On the other hand, if p is F, then $\neg p$ is T and $\neg \neg p$ is F. In both cases, p and $\neg \neg p$ agree.
7. Find a well-formed expression with three bound and two free variables.

Many solutions are possible; all contain five variables altogether. Here is one possible answer, with integers $a, b, c, x, y: \quad \forall a, \forall b, \forall c, a+b+c=x+y$.
8. Simplify the proposition $\neg \forall x \in \mathbb{R}, \exists y \in \mathbb{R}, \exists z \in \mathbb{Z}(x<y) \rightarrow(x<z \leq y)$ as much as possible, where only basic propositions are negated. Be sure to justify each step. DO NOT TRY TO PROVE OR DISPROVE THE RESULT, ONLY SIMPLIFY.
Step 1: pull negation into quantifiers: $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, \forall z \in \mathbb{Z} \neg((x<y) \rightarrow(x<z \leq y))$
Step 2: apply Negated CI thm (2.16): $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, \forall z \in \mathbb{Z} \quad(x<y) \wedge \neg(x<z \leq y)$
Step 3: interpret double inequality: $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, \forall z \in \mathbb{Z} \quad(x<y) \wedge \neg((x<z) \wedge(z \leq y))$
Step 4: apply De Morgan's law: $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, \forall z \in \mathbb{Z}(x<y) \wedge(\neg(x<z)) \vee(\neg(z \leq y))$
Step 5: negate inequalities: $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, \forall z \in \mathbb{Z} \quad(x<y) \wedge((x \geq z) \vee(z>y))$
Step 6 (optional): distributivity: $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, \forall z \in \mathbb{Z} \quad(y>x \geq z) \vee(z>y>x)$
9. Without using truth tables, prove the "Composition Theorem":

For all propositions p, q, r, we have $(p \rightarrow q) \wedge(p \rightarrow r) \vdash p \rightarrow(q \wedge r)$.
All correct proofs begin by letting p, q, r be arbitrary propositions, and continue by assuming $(p \rightarrow q) \wedge(p \rightarrow r)$.
METHOD 1: Apply conditional interpretation twice to get $(q \vee \neg p) \wedge(r \vee \neg p)$. Then apply distributivity to get $(q \wedge r) \vee \neg p$. Then apply conditional interpretation again to get $p \rightarrow(q \wedge r)$.
METHOD 2: Two cases, depending on p.
Case 1: p is F. Then $\neg p$ is T, so by addition $(q \wedge r) \vee \neg p$.
Case 2: p is T. By simplification on the hypothesis twice, $p \rightarrow q$ and $p \rightarrow r$. By modus ponens twice, we get q and r. By conjunction, $q \wedge r$. By addition, $(q \wedge r) \vee \neg p$.
In both cases, $(q \wedge r) \vee \neg p$. Now we apply conditional interpretation to get $p \rightarrow(q \wedge r)$.
METHOD 3: Two cases, depending on p.
Case 1: p is F. Then $p \rightarrow(q \wedge r)$ is vacuously true.
Case 2: p is T. By simplification on the hypothesis twice, $p \rightarrow q$ and $p \rightarrow r$. By modus ponens twice, we get q and r. By conjunction, $q \wedge r$. Then $p \rightarrow(q \wedge r)$ is trivially true.
In both cases, $p \rightarrow(q \wedge r)$ is true.
Note: $p \rightarrow(q \wedge r)$ should be the dramatic conclusion, and should not appear earlier.
10. Using p, q, \uparrow (possibly multiple times), but no other operators, find a proposition which is logically equivalent to $p \rightarrow q$. Justify your answer.
Various answers are possible, such as $p \uparrow(q \uparrow q)$ or $p \uparrow(p \uparrow q)$; this solution uses the former.
The last two columns of the truth table below agree, which proves that $p \uparrow(q \uparrow q) \equiv p \rightarrow q$.

p	q	$q \uparrow q$	$p \uparrow(q \uparrow q)$	$p \rightarrow q$
T	T	F	T	T
T	F	T	F	F
F	T	F	T	T
F	F	T	T	T

